loading...
دانلود سرای دانشجویی

دیودهای سیگنال
این نوع از انواع دیودها برای پردازش سیگنالهای ضعیف - معمولا” رادیویی - و کم جریان تا حداکثر حدود ۱۰۰mA کاربرد دارند. معروفترین و پر استفاده ترین آنها که ممکن است با آن آشنا باشید دیود ۱N۴۱۴۸ است که از سیلیکون ساخته شده است و ولتاژ شکست مستقیم آن ۰.۷ ولت است.
اما برخی از دیود های سیگنال از ژرمانیم هم ساخته می شوند، مانند OA۹۰ که ولتاژ شکست مستقیم پایینتری دارد، حدود ۰.۲ ولت. به همین دلیل از این نوع دیود بیشتر برای آشکار سازی امواج مدوله شده رادیویی استفاده می شود.
بصورت یک قانون کلی هنگامی که ولتاژ شکست مستقیم دیوید خیلی مهم نباشد، از دیودهای سیلیکون استفاده می شود. دلیل آن مقاومت بهتر آنها در مقابل حرارت محیط یا حرارت هنگام لحیم کاری و نیز مقاومت الکتریکی کمتر در ولتاژ مستقیم است. همچنین دیود های سیلیکونی سیگنال معمولا” در ولتاژ معکوس جریان نشتی بسیار کمتری نسبت به نوع ژرمانیم دارند.
از کاربرد دیگری که برای دیودهای سیگنال وجود دارد می توان به استفاده از آنها برای حفاظت مدار هنگامی که رله در یک مدار الکترونیکی قرار دارد نام برد. هنگامی که رله خاموش می شود تغییر جریان در سیم پیچ آن میتواند در دوسر آن ولتاژ بسیار زیادی القا کند که قرار دادن یک دیود در جهت مناسب میتواند این ولتاژ را خنثی کند. به شکل اول توجه کنید.
استفاده از دیود زنر برای تهیه ولتاژ ثابت دیودهای زنر :
همانطور که قبلا” اشاره کردیم از این دیودها برای تثبیت ولتاژ استفاده می شود. این نوع از دیود ها برای شکسته شدن با اطمینان در ولتاژ معکوس ساخته شده اند، بنابراین بدون ترس می توان آنها را در جهت معکوس بایاس کرد و از آنها برای تثبیت ولتاژ استفاده نمود. به هنگام استفاده از آنها معمولا” از یک مقاومت برای محدود کردن جریان بطور سری نیز استفاده می شود. به شکل نگاه کنید به این طریق شما یک ولتاژ رفرنس دقیق بدست آورده اید.
دیودهای زنر معمولا” با حروفی که در آنها Z وجود دارد نامگذاری می شوند مانند BZX یا BZY و … و ولتاژ شکست آنها نیز معمولا” روی دیود نوشته می شود، مانند ۴V۷ که به معنی ۴.۷ ولت است. همچنین توان تحمل این دیود ها نیز معمولا” مشخص است و شما هنگام خرید باید آنرا به فروشنده بگویید، در بازار نوع ۴۰۰mW و ۱.۳W آن بسیار رایج است.
 

قطعات دو پایانه طراحی شده برای پاسخ به جذب فوتون ، دیودهای نوری نامیده می‌شوند. از این قطعات پیوندی برای بهبودی سرعت پاسخ و حساسیت آشکارسازهای نوری یا تابش‌های پرانرژی استفاده می‌شود. بیشترین کاربرد آنها در مخابرات نوری و باتری‌های خورشیدی است.



دید کلی
قطعات دو پایانه طراحی شده برای پاسخ به جذب فوتون ، دیودهای نوری نامیده می‌شوند. برخی از دیودهای نوری سرعت پاسخ و حساسیت بسیار بالایی دارند. از آنجایی که ‌الکترونیک نوین علاوه بر سیگنالهای الکتریکی اغلب دارای سیگنالهای نوری نیز می‌باشد، دیودهای نوری نقش مهمی ‌را به عنوان قطعات الکترونیک ایفا می‌کنند. غالبا از قطعات پیوندی برای بهبودی سرعت پاسخ و حساسیت آشکارسازهای نوری یا تابشهای پر انرژی استفاده می‌شود.






ولتاژ و جریان در یک پیوند نور تابیده
رانش حاملین بار اقلیت در دو سر یک پیوند تولید جریان می‌کنند، بویژه حاملین بار تولید شده در ناحیه تهی w توسط میدان پیوند جدا شده ‌الکترونها در ناحیه n و حفره‌ها در ناحیه p جمع می‌شوند. همچنین حاملین بار اقلیت که به صورت گرمایی در فاصله یک طول نفوذ از طرفین پیوند تولید می‌شوند، به ناحیه تهی نفوذ کرده و توسط میدان الکتریکی به طرف دیگر جاروب می‌شوند. اگر پیوند بطور یکنواخت توسط فوتون‌های با انرژی hv>Eg تحت تابش قرار گیرد، یک نرخ تولید اضافی در این جریان مشارکت می‌کند و ولتاژ مستقیم در هر دو سر یک پیوند نور تابیده به نام پدیده فوتوولتائیک ایجاد می‌شود.





باتریهای خورشیدی
امروزه برای تأمین توان الکتریکی مورد نیاز بسیاری از ماهواره‌های فضایی از آرایه‌های باتری خورشیدی از نوع پیوندی p-n استفاده می‌شود. باتریهای خورشیدی می‌توانند توان مورد نیاز تجهیزات داخل یک ماهواره را در مدت زمان طولانی فراهم سازند. آرایه‌های پیوندی را می‌توان در سطح ماهواره توزیع و یا اینکه در باله‌های باتری خورشیدی متصل به بدنه ‌اصلی ماهواره جا داد. برای بهره گیری از بیشترین مقدار انرژی نوری موجود ، لازم است که باتری خورشیدی دارای پیوندی با سطح مقطع بزرگ و در نزدیکی سطح قطعه باشد. پیوند سطحی توسط نفوذ یا کاشت یون تشکیل شده و برای جلوگیری از انعکاس و نیز کاهش بازترکیب ، سطح آن با مواد مناسب پوشیده می‌شود.
آشکارسازهای نوری
یک چنین قطعه‌ای برای اندازه گیری سطوح روشنایی یا تبدیل سیگنالهای نوری متغیر با زمان به سیگنالهای الکتریکی وسیله‌ای مناسب است. در بیشتر آشکارسازهای نوری سرعت پاسخ آشکارساز بسیار مهم است. مرحله نفوذ حاملین بار امری زمان‌بر است و باید در صورت امکان حذف شود. پس مطلوب است که پهنای ناحیه تهی به ‌اندازه کافی بزرگ باشد تا اکثر فوتون‌ها به‌جای نواحی خنثی n و p در درون ناحیه تهی جذب شوند. وقتی که یک EHP در ناحیه تهی بوجود آید، میدان الکتریکی ، الکترون را به طرف n و حفره را به طرف p می‌کشد. چون این رانش حاملین بار در زمان کوتاهی رخ می‌دهد، پاسخ دیود نوری می‌تواند بسیار سریع باشد. هنگامی ‌که حاملین بار عمدتا در ناحیه تهی w ایجاد شوند، به آشکارساز یک دیود نوری لایه تهی گفته می‌شود. اگر w پهن باشد، اکثر فوتونهای تابشی در ناحیه تهی جذب خواهند شد. w پهن منجر به کاهش ظرفیت پیوند شده و در نتیجه ثابت زمانی مدار آشکارساز را کاهش می‌دهد.





نحوه کنترل پهنای ناحیه تهی
روش مناسب برای کنترل پهنای ناحیه تهی ساختن یک آشکارساز نوری p-i-n است. ناحیه i مادامی که مقاومت ویژه زیاد است، لزومی ‌ندارد که حقیقتا ذاتی باشد. می‌توان آن را به روش رونشستی روی بستر نوع n رشد داد و ناحیه p را توسط نفوذ ایجاد کرد. هنگامی‌ که ‌این قطعه در گرایش معکوس قرار می‌گیرد، ولتاژ وارده تقریبا بطور کامل در دو سر ناحیه i ظاهر می‌شود. برای آشکارسازی سیگنالهای نوری ضعیف اغلب مناسب است که دیود نوری در ناحیه شکست بهمنی مشخصه‌اش عمل کند.
نویز و پهنای باند آشکارسازهای نوری
در سیستمهای مخابرات نوری حساسیت آشکارسازهای نوری و زمان پاسخ آنها بسیار مهم است. متاسفانه ‌این دو ویژگی عموما با هم بهینه نمی‌شوند. مثلا در یک آشکارساز نوری بهره به نسبت طول عمر حاملین بار به زمان گذار وابسته ‌است. از سوی دیگر پاسخ فرکانسی نسبت عکس با طول عمر حاملین بار دارد. معمولا حاصلضرب بهره در پهنای باند را به عنوان ضریب شایستگی برای آشکارسازها ملاک قرار می‌دهند. طراحی برای افزایش بهره سبب کاهش پهنای باند می‌شود و برعکس ویژگی مهم دیگر آشکارسازها نسبت سیگنال به نویز است که مقدار اطلاعات مفید در مقایسه با نویز در زمینه آشکارساز را نشان می‌دهد. منبع اصلی نویز در نور رساناها نوسانات اتفاقی در جریان تاریک است. جریان نویز در تاریکی متناسب ، دما و رسانایی ماده ‌افزایش می‌یابد. افزایش مقاومت تاریک همچنین بهره نور رسانا را افزایش داده و بالطبع باعث کاهش پهنای باند می‌شود.





کاربرد دیود نوری
کاربرد باتریهای خورشیدی محدود به فضای دور نیست. حتی با تضعیف شدت تابش خورشید توسط جو می‌توان توسط این باتریها توان مفیدی را برای کاربردهای زمینی بدست آورد. یک باتری خوش ساخت از سیلیسیوم می‌تواند دارای بازده خوب در تبدیل انرژی الکتریکی باشد.
 

مقدمه
دیودها جریان الکتریکی را در یک جهت از خود عبور می‌‌دهند و در جهت دیگر در مقابل عبور جریان از خود مقاومت بالایی نشان می‌‌دهند. این خاصیت آنها باعث شده بود تا در سالهای اولیه ساخت این وسیله الکترونیکی ، به آن دریچه یا Valve هم اطلاق شود. از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن می‌‌سازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و - به کاتد) آنرا آماده کار کنید. مقدار ولتاژی که باعث می‌شود تا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه یا (forward voltage drop) نامیده می‌شود که چیزی حدود 0.6 تا 0.6 ولت می‌‌باشد.





ولتاژ معکوس
هنگامی که شما ولتاژ معکوس به دیود متصل می‌‌کنید (+ به کاتد و - به آند) جریانی از دیود عبور نمی‌کند، مگر جریان بسیار کمی که به جریان نشتی یا Leakage معرف است که در حدود چند µA یا حتی کمتر می‌‌باشد. این مقدار جریان معمولآ در اغلب مدارهای الکترونیکی قابل صرفنظر کردن بوده و تأثیر در رفتار سایر المانهای مدار نمی‌گذارد. اما نکته مهم آنکه تمام دیودها یک آستانه برای حداکثر ولتاژ معکوس دارند که اگر ولتاژ معکوس بیش از آن شود دیود می‌‌سوزد و جریان را در جهت معکوس هم عبور می‌‌دهد. به این ولتاژ آستانه شکست یا Breakdown گفته می‌شود.





دسته بندی دیودها
در دسته بندی اصلی ، دیودها را به سه قسمت اصلی تقسیم می‌‌کنند، دیودهای سیگنال (Signal) که برای آشکار سازی در رادیو بکار می‌‌روند و جریانی در حد میلی آمپر از خود عبور می‌‌دهند، دیودهای یکسو کننده (Rectifiers) که برای یکسو سازی جریانهای متناوب بکار برده می‌‌شوند و توانایی عبور جریانهای زیاد را دارند و بالاخره دیودهای زنر (Zener) که برای تثبیت ولتاژ از آنها استفاده می‌شود.
اختراع دیود پلاستیکی (plastic diode)
محققان فیزیک دانشگاه اوهایو (Ohio State University) توانستند دیود تونل پلیمری اختراع کنند. این قطعه الکترونیکی منجر به ساخت نسل آینده حافظه‌های پلاستیکی کامپیوتری و چیپهای مدارات منطقی خواهد شد. این قطعات کم مصرف و انعطاف پذیر خواهند بود. ایده اصلی از سال 2003 که یک دانشجوی کارشناسی دانشگاه اوهایو ، سیتا اسار ، شروع به طراحی سلول خورشیدی پلاستیکی نمود بوجود آمد. تیم پژوهشی توسط پاول برگر (Paul Berger) ، پروفسور الکترونیک و مهندسی کامپیوتر و همچنین پروفسور فیزیک دانشگاه اوهایو رهبری می‌شود.
 

دیود چیست ؟
از اتصال دولایه p & n دیود درست می شود
1- بعد از پیوند نیمه هادی نوع p & n کنار یکدیگر ، الکترونهای آزاد و حفره ها از محل پیوند عبور کرده ، با هم ترکیب می شوند و تشکیل یک لایه سد یا عایق می دهند .
2- یک منطقه تخلیه در محل پیوند ها ایجاد می شود که فاقد الکترونهای آزاد و حفره ها می باشد ، لکن اتمهایی که الکترون از دست داده و یا گرفته اند ، در دو طرف لایه سد و در منطقه تخلیه وجود دارند .
3- اتمهای یونیزه شده ، ایجاد سد پتانسیل می کنند که برای نیمه هادی ژرمانیومی حدود ۰.۲ ولت است و برای نیمه هادی سیلسیمی حدود ۰.۶ ولت است .
4- سد پتانسیل باعث که از حرکت و ترکیب بیشتر الکترونها و حفره ها در لایه سد جلوگیری به عمل آید .
5- کریستال نیمه هادی نوع p دارای بار الکتریکی مثبت و کریستال نیمه هادی n دارای بار الکتریکی منفی می باشد .
بایاس دیود
وصل کردن ولتاژ به دیود را بایاس کردن دیود می گویند .
بایاس مستقیم
اگرنیمه هادی نوع p به قطب مثبت باتری و نیمه هادی نوع n به قطب منفی آن وصل شود و ولتاژ از پتانسیل سد دیود بیشترباشد ، در مدار جریان بر قرار خواهد شد .

بایاس معکوس
اگر قطب مثبت باتری به نیمه هادی نوع n وصل شود و قطب منفی باتری به نیمه هادی نوع p وصل شود ، جریانی در مدار نخواهیم داشت .

تست دیود
همانطور که گفته شد اگر دوید در بایاس موافق یا معکوس قرار بگیرد جریان را از خود عبور می دهد و ما می توانیم دیود را با یک مدار ساده سری کنیم ( البته با رعایت قطبهای دیود و باتری ) اگر مدار شروع به کار کرد پس دیود سالم است و در غیر این صورت دیود سوخته شده است .

انواع دیود ها
1- دیود اتصال نقطه ای
2- دیود زنر
3- دیود نور دهنده LED
4- دیود خازنی ( واراکتور )
5- فتو دیود

دیود اتصال نقطه ای
دیود های معمولی در بایاس معکوس ایجاد ظرفیت خازنی ( حدود PF ) می کنند . اگر بخواهیم در فرکانس های بالا به کار می بریم ، به علت ظرفیت خازنی در بایاس معکوس ، جریان در مدار عبور می کند . چون در فرکانس های بالا مقاومت دیود کم می شود . برای جلوگیری از این کار از دیود اتصال نقطه ای استفاده می کنیم

دیود زنر
دیود زنر ، مانند یک دیود معمولی از دو نیمه هادی نوع P & N ساخته می شود . اگر یه دیود معمولی را در بایاس معکوس اتصال دهیم و ولتاژ معکوس را زیاد کنیم ، در یک ولتاژ خاص ، دیود در بایاس معکوس نیز شروع به هدایت می کند . ولتاژی که دیود در بایاس مخالف ، شروع به هدایت می کند ، به ولتاژ زنر معروف است و با تنظیم نا خالصی می توان ولتاژ شکسته شدن پیوند ها را کنترل کرد
ولتاژ زنر : ولتاژی که دیود زنر به ازای آن در بایاس معکوس ، هادی می شود به ولتاژ زنر معروف است .
دیود نوردهنده LED
این دوید از دو نوع نیمه هادی P & N تشکیل شده است . هر گاه این دیود ، در بایاس مستقیم ولتاژی قرار گیرد و شدت جریان به اندازه کافی باشد ، دیود ، از خود نور تولید می کند . نور تولید شده در محل اتصال دو نیمه هادی تشکیل می شود . نور تولیدی بستگی به جنس به کار برده شده در نیمه هادی دارد . این لامپ چند مزایا بر لامپ های معمولی دارد که عبارتند از :
1- کوچک بودن و نیاز به فضای کم
2- محکم بودن و داشتن عمر طولانی ( حدود صد هزار ساعت کار )
3- قطع و وصل سریع نور
4- تلفات حرارتی کم
5- ولتاژ کار کم ، بین ۱.۷ ولت تا 3.3 ولت
6- جریان کم حدود چند میلی آمپر با نور قابل رویت
7- توان کم ، حدود ۱۰ تا ۱۵۰ میلی وات

دیود خازنی ( وراکتور )
این دیود از دو نیمه هادی نوع P & N تشکیل می شود . دیود خازنی در واقع دیودی است که به جای خازن بکار می رود و مقدار ظرفیت آن با ولتاژ دو سر آن رابطه عکس دارد
فتو دیود
این دیود از دو نیمه هادی نوع P & N تشکیل می شود . با این تفاوت که محل پیوند P & N ، جهت تابانیدن نور به آن از مواد پلاستیکی سیاه پوشیده نمی باشد ، بلکه توسط شیشه و یا پلاستیک شفاف پوشیده می گردد تا نور بتواند با آسانی به آن بتابد . روی اکتر فتو دیود ها یک لنز بسیار کوچک نصب می شود تا بتواند نور تابانیده شده به آن را متمرکز کرده و به محل پیوند برساند .
 

اعداد صحيح باينری به دو شکل ديده می شوند:

1. اعداد صحيح بدون علامت (unsigned Integer) که شامل اعداد صحيح غير منفی هستند.
2. اعداد صحيح علامت دار (signed Integer) که می توانند مثبت يا منفی باشند.
 


نمايش اعداد صحيح بدون علامت

در اعداد صحيح بدون علامت کليه بيت ها به داده اختصاص داده می شود. کمترين مقدار ممکن يک عدد صحيح بدون علامت وقتی است که کليه بيت ها صفر باشد که معادل عدد 0 است. در بزرگترين عدد صحيح بدون علامت کليه بيت های عدد يک است.


جدول تعداد بيت ها و محدوده مقادير ممکن داده های عددی صحيح بدون علامت


نمايش اعداد صحيح علامت دار

اعداد صحيح علامت دار ممکن است مثبت يا منفی باشند. برای تشخيص علامت عدد يکی از بيت ها را به بيت علامت اختصاص می دهند. سه تکنيک برای نمايش علامت عدد وجود دارد که در نمايش اعداد صحيح علامت دار در حافظه استفاده می شده اند. در کليه اين روش ها با ارزش ترين بيت (سمت چپ ترين بيت) را به عنوان بيت علامت (sign bit) درنظر می گيرند. اگر اين بيت 0 باشد عدد مثبت و اگر 1 باشد عدد منفی است.

روش های نمايش اعداد صحيح علامت دار عبارتند از:

1. علامت مقدار
2. مکمل 1
3. مکمل 2
 

مشخصه دیود در گرایش معکوس

هرگاه جهت دیود را تغییر داده یعنی برعکس حالت گرایش مستقیم ، در جهت بایاس معکوس جریان مدار خیلی کم بوده و همچنین با افزایش ولتاژ معکوس دو سر دیود جریان چندان تغییر نمی کند به همین علت به آن جریان اشباع دیود گویند که این جریان حاصل حاملهای اقلیت می باشد . حدود مقدار این جریان برای دیودهای سیلیسیم ،نانو آمپر و برای دیودهای ژرمانیم حدود میکرو آمپر است. ارگ ولتاژ معکوس دیود را همچنان افزایش دهیم به ازاء ولتاژی ، جریان دیود به شدت افزایش می یابد . ولتاژ مزبور را ولتاژ شکست دیود می نامند و آنرا با VB نشان می دهند . دیودهای معمولی ،اگر در ناحیه شکست وارد شوند از بین می روند .(اصطلاحاَ می سوزند).
بنابر این ولتاژ شکست دیود یکی از مقادیر مجاز دیود است که توسط سازنده معین می گردد و استفاده کننده از دیود باید دقت نماید تا ولتاژ معکوس دیود به این مقدار نرسد.
البته در حالت مستقیم نیز جریان دیود اگر از حدی تجاوز نماید به علت محدودیت توان دیودباعث از بین رفتن دیود می گردد.این مقدار نیز یکی از مقادیر مجاز دیود است و به آن جریان مجاز دیود گفته می شود و توسط سازنده دیود معین می گردد.
 

مشخصه دیود در گرایش مستقیم

فرض کنید توسط مداری بتوانیم ولتاژ دو سر یک دیود را تغییر دهیم و توسط ولتمتر و آمپرمتر ولتاژ و جریان دیود را در هر لحظه اندازه گیری کرده ،بر روی محورهای مختصات رسم نماییم.جریان I در جهتی است که دیود قادر به عبور آن است .به همین علت اصطلاحاَ گفته می شود دیود در گرایش مستقیم یا بایاس مستقیم است . در هر حال اگر توسط پتانسیومتر ولتاژ دو سر دیود را از صفر افزایش دهیم ،مشاهده می شود تا ولتاژ به خصوصی ، جریان قابل ملاحظه ای از دیود عبور نمی کند.به این ولتاژ زانو می گویند ،این ولتاژبرای دیودهای از جنس ژرمانیم 2/0 ولت و برای دیودهای سیلیسیم 7/0 ولت است .تا ولتاژ زانو اگرچه دیود در جهت مستقیم است ، اما هنوز دیود روشن نشده است .از این ولتاژ به بعد ، به طور ناگهان جریان در مدار افزایش یافته و هرچه ولتاژ دیود را افزایش دهیم ، جریان دیود افزایش می یابد .
 

واحد پردازش مرکزی

پردازنده يا واحد پردازش مرکزی (Central Processing Unit) يا (CPU) از واحد کنترل و واحد محاسبات و منطق ساخته شده است. وظيفه آن خواندن و نوشتن محتويات سلول حافظه، انتقال داده بين سلول های حافظه و ثبات های خاص، رمزبرداری و اجرای دستورالعمل های ذخيره شده در حافظه اصلی است.

CPU هر دستورالعمل را در يک سری مراحل اجرا می کند و برای همگام کردن سيکل اجرای دستورالعمل از يک ساعت (Clock) استفاده می کنند. ساعت در يک فرکانس ثابت پالس می زند که سرعت ساعت ناميده می شود. اين ساعت دقيقه و ثانيه را نگه نمی دارد بلکه فقط در نرخ ثابتی ضربان دارد. مدارهای الکترونيکی کامپيوتر از اين ضربان ها برای انجام صحيح عمليات خود استفاده می کنند. تعداد ضربه ها يا اصطلاحا سيکل های مورد نياز يک دستورالعمل بستگی به نسل و مدل CPU دارد.


مثال. وقتی يک کامپيوتر 1.5GHz می خريد، 1.5 GHz فرکانس اين ساعت است. يعنی در هر ثانيه 1.5 ميليارد پالس می زند (گيگاهرتز GHz يا يک ميليارد سيکل در ثانيه است).


مجموعه دستورالعمل ها

مجموعه ای از تمام دستورالعمل هائی که يک نوع پردازنده می تواند اجرا می کند مجموعه دستورالعمل (Instruction Set) ناميده می شوند که درواقع زبان ماشين آن نوع پردازنده را شکل می دهد. دستورالعمل های زبان ماشين به صورت اعداد رمز می شوند و عموما ساده هستند. زيرا زبان ماشين با اين هدف طراحی می شود که پردازنده قادر باشد مقصود دستورالعمل را سريع کشف کند تا بتواند به طور موثر آن را اجرا کند..

هر پردازنده زبان ماشين منحصر بفرد خود را دارد. و مجموعه دستورالعمل از ماشينی به ماشين ديگر متفاوت است. به همين دليل مثلا برنامه های نوشته شده برای Mac نمی توانند روی يک IBM-PC اجرا شوند. برنامه های نوشته شده در زبان های ديگر بايد توسط کامپايلر به زبان ماشين پردازنده ای که روی آن اجرا می شود تبديل شود. معمولا عملکرد کامپايلرها بر روی ماشين با دستورالعمل کمتر آسان تر است.


مجموعه ثبات ها

دستورالعمل ها ممکن است نياز به داده ای داشته باشند تا روی آن عمل کند. هر پردازنده دارای يکسری سلول های حافظه است که داده های دستورالعمل را در خود ذخيره می کنند. اين سلول ها ثبات (register) ناميده می شوند و درون خود پردازنده قرار دارند. پردازنده می تواند به داده درون ثبات سريع تر از داده درون حافظه دسترسی پيدا کند. اغلب کامپيوترها مجموعه ای از ثبات ها را برای ذخيره موقت داده دارند. البته تعداد ثبات های پردازنده اندک است، بنابراين برنامه نويس ناچار است تنها داده های جاری را در ثبات ذخيره نمايد.


انواع پردازنده ها

پردازنده ها به گروه های زير دسته بندی می شوند:

1. Complex Instruction Set Computers - CISC
     • پردازنده هائی که مجموعه دستورالعمل کاملی با پشتيبانی سخت افزاری برای انواع وسيعی ازعمليات را دارند. در عمليات علمی، مهندسی و رياضی معمولا اکثر کارها را در کوتاهترين زمان انجام می دهند.
2. Reduced Instruction Set Computers - RISC
     • پردازنده هائی که مجموعه دستورالعمل فشرده و کوچکی دارند. در کاربردهای تجاری و برنامه هائی که توسط کامپايلر ايجاد شده اند معمولا اکثر کارها را در کوتاهترين زمان انجام می دهند.
3. Hybrid
     • پردازنده هائی که ترکيبی از روش CISC و RISC هستند و سعی دارند تعادلی بين مزايای هر دو روش برقرار کنند.
4. Special purpose
     • پردازند هائی که برای وظايف خاصی بهينه شده اند. Digital signal processors و انواع co-processors نوع متعارف اين دسته هستند.
5. Hypothetical
     • پردازنده هائی که هنوز وجود ندارند يا هرگز وجود نداشته اند. پردازنده هائی که در فاز طراحی هستند يا برای کارهای نظری درنظر گرفته شده اند. معروف ترين آنها MIX است که يک پردازنده فرضی آموزش ساخته شده توسط Donald E. Knuth برای ارائه الگوريتم های کامپيوتری است.

حافظه

حافظه

حافظه مکان ذخيره برنامه ها و داده ها با امکان دسترسی مجدد به آنها است. حافظه اصلی از ديد برنامه نويس از تعدادی بيت تشکيل شده است که قادر به نگهداری صفر يا يک است. مکانيسم دسترسی به اطلاعات درون حافظه آدرس دهی است. بيت هائی که دارای آدرس يکسان هستند را سلول حافظه (cell) می نامند. هر سلول تنها می تواند شامل يک مقدارعددی باشد. طول سلول(Lc) توسط تعداد بيت های سلول مشخص می شود. در ريز کامپيوترها طول سلول هشت بيت است که به آن بايت نيز گفته می شود. خاصيت مهم سلول آدرس پذيری است، يعنی هر سلول دارای يک آدرس منحصر بفرد است. بنابراين هر بايت درحافظه نيز دارای يک آدرس منحصر بفرد است.

اغلب حافظه ها در اندازه های بزرگتراز بايت نظير کيلوبايت (1KB=210=1,024 bytes)، مگابايت (1MB=220= 1,048,576 bytes) و گيگابايت (1GB=230=1,073,741,824 bytes) بيان می شوند. يک کامپيوتر با 32 مگابايت حافظه قادر است تقريبا 32 ميليون بايت از اطلاعات را نگهداری کند.


نکته. تعداد بيت های يک کلمه بستگی به سخت افزار دارد و با Lw نشان داده می شود. همواره رابطه Lw≥Lc برقرار است. آدرس هر کلمه آدرس اولين سلول آن است.


فضای آدرسی

آدرس های حافظه از عدد صفر شروع می شوند. اگر حافظه ای دارای n سلول باشد آدرس های آن از 0 تا n-1 خواهد بود. کامپيوتری که سيستم عددی باينری را استفاده می کند برای بيان آدرس نيز همان روش را به کار می برد. تعداد بيت های آدرس تعداد سلول های قابل دسترس حافظه را نشان می دهد و ربطی به طول سلول ندارد. فضای آدرسی بيشترين ميزان حافظه است که يک پردازنده می تواند آدرس دهی کند.

اگر آدرسی m بيت طول داشته باشد بيشترين تعداد سلول های قابل آدرس دهی 2m خواهد بود.

يک سيستم کامپيوتری ترکيب کاملي از سخت افزار و نرم افزارهای سيستمی است که باعث می شود ماشين مفيد و وظيفه مندي برای کار معينی بشود.

اجزای اصلی سخت افزار يک ريز کامپيوتر شامل:

• پردازنده مرکزی
• حافظه
• صفحه کليد به عنوان ورودی
• صفحه نمايش به عنوان خروجی
• يک يا چند ديسک درايو برای ذخيره برنامه ها و داده ها

تعداد صفحات : 425

اطلاعات کاربری
آمار سایت
  • کل مطالب : 4247
  • کل نظرات : 0
  • افراد آنلاین : 3
  • تعداد اعضا : 2926
  • آی پی امروز : 67
  • آی پی دیروز : 161
  • بازدید امروز : 463
  • باردید دیروز : 830
  • گوگل امروز : 6
  • گوگل دیروز : 51
  • بازدید هفته : 463
  • بازدید ماه : 35,404
  • بازدید سال : 110,513
  • بازدید کلی : 8,289,207
  • کدهای اختصاصی