loading...
دانلود سرای دانشجویی

زبان اسمبلی

هدف اين درس درک عميق تر نحوه کار کامپيوتر در سطح پايين و در نتيجه توليد نرم افزارهای کارآمدتر در سطوح بالا می باشد. يادگيری زبان اسمبلی به آشنائی بيشتر با طريقه کارکردن سخت افزار، برنامه ها و سيستم عامل با يکديگر کمک می کند.
در اين درس استفاده از دستورات اسمبلي و نوشتن برنامه هاي ساده اسمبلي را فراخواهيد گرفت.


 

مقدمه

زبان اسمبلی قديمی ترين زبان برنامه نويسی سطح پايين بعد از زبان ماشين است که ساختار و عملکردی وابسته به ماشين دارد و وسيله خوبی برای يادگيری نحوه کار کامپيوتر، سيستم عامل، کامپايلرها و زبان های سطح بالا است .

 

مقایسه زبان اسمبلی و زبان های سطح بالا

زبان ماشین و زبان اسمبلی

اسمبلر چیست؟

هدف از یادگیری زبان اسمبلی


 

 سیستم های عددی

محاسبات کامپيوتري در مبناي دو انجام مي شود. به طور معمول از سيستم عددي هگزادسيمال براي نمايش اعداد باينري استفاده مي شود.

جدول توان های 2

تبدیل باینری به اعشاری

جمع اعداد باينری

هگزا دسیمال و تبدیلات آن

جمع اعداد در هگزا دسیمال


 

نمایش داده ها

اکثر ساختمان های داده انتزاعی هستند که توسط برنامه نويس با مجموعه ای از دستورالعمل ها تعريف می شوند. نوع های داده پايه (نظير اعداد باينری صحيح يا مميز شناور، رشته های بيتی، کاراکترها و غيره ) مستقيما در سخت افزار همراه با مجموعه ای از دستورالعمل طراحی می شوند. يک برنامه نويس زبان اسمبلی بايد بداند چگونه سخت افزار اين انواع داده های اصلی را پياده سازی می کند.

نمايش اعداد صحيح - روش علامت مقدار

روش نمايش مکمل2

جدول تعداد بيت ها و محدوده مقادير ممکن داده های عددی صحيح علامت دار به روش مکمل2

محاسبات در مکمل2

کاهش و افزايش طول داده


 

ساختمان کامپیوتر

يک سيستم کامپيوتری ترکيب کاملي از سخت افزار و نرم افزارهای سيستمی است که باعث می شود ماشين مفيد و وظيفه مندي برای کار معينی بشود.

اجزای اصلی سخت افزار يک ريز کامپيوتر شامل:

• پردازنده مرکزی
• حافظه
• صفحه کليد به عنوان ورودی
• صفحه نمايش به عنوان خروجی
• يک يا چند ديسک درايو برای ذخيره برنامه ها و داده ها

حافظه

پردازنده و انواع آن


پردازندهای اینتل

با توجه به اينکه دستورات اسمبلي 8086 در قسمت ها آينده بررسي مي شوند، در اين صفحه با نحوه آدرس دهي حافظه و ثبات هاي اين پردازنده آشنا خواهيد شد.

دیاگرام پردازنده های اینتل

آدرس دهی سگمنتی

مدهای اجرا

مجموعه ثبات ها

توضیحات ثبات ها


 

Debug

برنامه Debug محيطی برای بررسی فايل های مقصد دودوئی و اجرائی است. برنامه امکان انجام تغييرات جزئی در يک برنامه اجرائی را فراهم می کند بدون اينکه نياز به دوباره اسمبل کردن آن باشد.

برنامه Debug

دستورات Debug


 

دستورات اسمبلی

يک برنامه پيچيده از کنار هم قرار دادن دستورات ساده اسمبلی شکل می گيرد. هنگام شروع برنامه نويسی به زبان اسمبلی نيازی به يادگيری کليه دستورات نيست، بنابراين برخی از پرکاربردترين دستورات 80x86 در ادامه شرح داده خواهند شد. دستورات به صورت زير گروه بندی شده اند.

دستورات انتقال داده

دستورات گسترش داده

دستورات جمع و تفريق

دستورات ضرب و تقسيم

دستورات منطقی

ساختارهای حلقه تکرار

زيربرنامه

وقفه ها

پشته

دستورات کنترل CPU


 

برنامه نویسی

در اين بخش ساختار کلی يک برنامه به زبان اسمبلی توضيح داده می شود. به نحوه تعريف متغيرها و ثابت ها، استفاده از راهنماهای اسمبلر و اسمبل کردن و اجرای برنامه نيز اشاره شده است.

مدل حافظه

راهنماهای سگمنت

ثابت ها و متغيرها

برنامه اصلی

اسمبل و اجرای برنامه


 

ماکرو

ماکرو مجموعه ای از دستورات است که مشابه زيربرنامه يکبار نوشته می شود و چندين بار استفاده می شود.

ماکرو (macro) نام مخففی برای مجموعه ای از دستورالعمل ها، راهنماها يا ماکروهای ديگر است که يکبار نوشته می شود و به هر تعداد دفعات لازم قابل استفاده است.

اسمبلر هنگام ترجمه برنامه در مواجهه با نام ماکرو دستورات معادل را قرار می دهد.

ماکرو

تعريف ماکرو

کتابخانه ماکرو


 

پشته

پشته يک ليست LIFO است که می تواند به عنوان محلی مناسب برای ذخيره داده های موقتی استفاده شود. پشته برای فراخوانی زيربرنامه ها، ارسال پارامترها و متغيرهای محلی هم به کار می رود. دستورات ابتدائی پشته push و pop هستند.

پشته

تعريف پشته در برنامه

دستورات push و pop

ثبات SP


 

زیر برنامه

زير برنامه (procedure) مجموعه ای از دستورات است که يکبار تعريف و به دفعات استفاده می شود. با بکارگيری زيربرنامه خوانائی برنامه بالاتر رفته و از تکرار دستورات مشابه جلوگيری می شود. علاوه براين اشکال زدائی و تغيير برنامه آسان تر انجام گيرد.

وقتی يک زيربرنامه فراخوانی می شود کنترل اجرای برنامه به زيربرنامه هدايت می شود. آدرس دستورالعمل بعدی در پشته ذخيره می شود بنابراين هنگامی که زيربرنامه اجرا شد کنترل اجرا قادر خواهد بود به خط بعد از فراخوانی زيربرنامه بر می گردد.

زيربرنامه

زيربرنامه های near و far

دستورات فراخوانی و بازگشت زيربرنامه

ارسال و دريافت پارمترها


 

وقفه ها

گاهی اوقات جريان عادی اجرای يک برنامه برای پردازش رويدادی که نياز به پاسخ سريع دارد متوقف می شود. سخت افزار کامپيوتر برای مديريت اين رويدادها مکانيسمی به نام وقفه (interrupt) را دارد.

مثال. وقتی mouse حرکت می کند، سخت افزار mouse برنامه جاری را متوقف می کند تا حرکت mouse گرفته شود( برای حرکت مکان نمای mouse روی صفحه نمايش).

وقتی CPU يک سيگنال وقفه را تشخيص می دهد، فعاليت جاری خود را متوقف می کند و روتين خاصی را فراخوانی می کند که روتين وقفه (interrupt handler) نام دارد. اين روتين علت وقوع وقفه را تشخيص می دهد و عکس العمل مناسب را انجام می دهد.

بيشتر روتين های وقفه بعد از پايان يافتن کنترل اجرا را به برنامه متوقف شده بازمی گردانند. آنها کليه مقادير ثبات ها را به وضعيت قبل از توليد وقفه بر می گردانند. بنابراين برنامه متوقف شده به گونه ای به اجرا ادامه می دهد که هيچ اتفاقی نيافتاده است به جز اين که سيکل های CPU را از دست می دهند.

وقتی دو يا چند وقفه همزمان با هم اتفاق می افتند، CPU از سيستم الويت استفاده می کند و می تواند در طی اجرای بخش بحرانی يک برنامه وقفه ها را غيرفعال کند. وقتی دارد يک روتين وقفه را اجرا می کند کليه وقفه های با الويت کمتر يا، تا زمان خاتمه اجرای روتين، غير فعال هستند.

انواع وقفه

دستورالعمل int

جدول بردار وقفه


 

پورت ها

درحال آماه سازی


 

دستورات ۸۰۸۶

درحال آماه سازی


 

 

 

با نظرات خود ما را یاری کنید

 

کدگذاري ASCII

کد گذاری ASCII (American Standard Code for Information Interchange) به حروف، ارقام، علائم و کاراکترهای مختلف يک عدد باينری 7 بيتی نسبت می دهد و هشتمين بيت را 0 درنظر می گيرد. به اين صورت هر کاراکتر يک بايت را اشغال می کند.

روشن است که اين روش برای نمايش اعداد مناسب نيست، چون در فرمت باينری يک بايت اعداد 0 تا 255 را نمايش می دهد، اما با کد ASCII يک بايت تنها برای نمايش يک رقم کافی است. به همين دليل کلا اين روش برای نمايش متن در حافظه استفاده می شود.


مثال. نمايش عدد 123 با دو فرمت ASCII و باينری

ASCII vs. Binary

نوع توسعه يافته اين سيستم شامل 8 بيت برای هر کاراکتر است و 256 حالت مختلف را شامل می شود. کدهای 0 تا 127 برای کاراکترهای استاندارد، کدهای کنترلی و ارتباطی و مقادير 128 تا 255 برای نمايش سمبل های گرافيکی و حروف يونانی هستند.


مثال. رشته "ABC123" به صورت 41h 42h 43h 30h 31h 32h نشان داده می شود.


يک کدگذاری کامل تر که جای ASCII را دارد می گيرد Unicode است. تفاوت کليدی بين اين دو نوع کدگذاری در اين است که ASCII يک بايت را برای کدکردن يک کاراکتر استفاده می کند در حاليکه Unicode برای هر کاراکتر دو بايت را درنظر می گيرد. بنابراين کاراکترهای بيشتری را می تواند نمايش دهد که اين برای نمايش کاراکترهای کليه زبان های دنيا کاربردی است.


مثال. کدگذاری ASCII کد 41h يا 65 را به کاراکتر A می دهد. کدگذاری Unicode کد 0041h هگز را می دهد.


نکته1. تفاوت يک حرف بزرگ با يک حرف کوچک تنها در بيت شماره 5 است؛ اين بيت در حروف بزرگ 0 و در حروف کوچک 1 است. ("m"= 01101101 و "M"= 01001101)
نکته2. ارقام 0 تا 9 کدهای 30h تا 39h را دارا می باشند.
نکته3. کاراکترهای قابل چاپ بين 20h تا 7Eh است.
نکته4. کاراکترهای 0 تا 1Fh و 7Fh کاراکترهای کنترلی نام دارند که قابل رويت نمی باشند.
نکته5. کاراکتر ESC با کد 1Bh همراه با کاراکترهای ديگر اغلب برای يک عمل خاص به دستگاه های جانبی ارسال می شود.
نکته6. کدهای 41 تا 5Ah کاراکترهای A تا Z و کدهای 61 تا 7Ah کاراکترهای a تا z هستند.
نکته7. کاراکتر CR و LF با کدهای 0Dh و 0Ah به ترتيب باعث حرکت مکان نما به شروع خط جاری و خط بعد می شود.

اطلاعات کاربری
آمار سایت
  • کل مطالب : 4247
  • کل نظرات : 0
  • افراد آنلاین : 6
  • تعداد اعضا : 2927
  • آی پی امروز : 202
  • آی پی دیروز : 339
  • بازدید امروز : 1,018
  • باردید دیروز : 1,762
  • گوگل امروز : 26
  • گوگل دیروز : 37
  • بازدید هفته : 7,539
  • بازدید ماه : 44,704
  • بازدید سال : 260,083
  • بازدید کلی : 8,438,777
  • کدهای اختصاصی