
دانلود مقاله ترجمه شده : ابزار داده کاوی Data mining tools
فرمت فایل دانلودی: .docxفرمت فایل اصلی: doc
تعداد صفحات: 19
حجم فایل: 13 کیلوبایت
عنوان ترجمه فارسی: ابزار داده کاوی
نویسنده/ناشر/نام مجله : Advanced Review
سال انتشار 2011
تعداد صفحات انگليسی: 13
تعداد صفحات فارسی: 19
نوع فایل های ضمیمه Word+Pdf
عنوان مقاله انگليسی: Data mining tools
چکیده
توسعه و بکارگیری الگوریتم های داده کاوی مستلزم بکارگیری ابزار نرم افزاری قوی می باشد . همانطور که تعداد ابزار در دسترس در حال رشد می باشد ، انتخاب مناسب ترین ابزار تا حد قالا توجهی دشوار می گردد . این مقاله تلاش می کند تا از فرآیند تصمیم گیری از طریق بحث و تبادل نظر در مورد توسعه تاریخی و ارایه طیفی از ابزار داده کاوی عالی موجود و ابزار مربوطه پشتیبانی نماید . علاوه بر این ، ما معیار هایی را مبتنی بر گروهای مختلف کاربر ، وظایف داده کاوی ، شیوه های تجسم و تعامل ، گزینه های وارداتی و صادراتی داده ها و مدل ها ، پلت فرم ها و سیاست های صدور مجوز را برای دسته بندی ابزار پیشنهاد می کنیم . سپس مشخصه های نوعی این شیوه های مختلف توضیح داده می شوند و انتخاب مهم ترین ابزار دسته بند می شود . مقاله حاضر از قرار زیر می باشد : بخش اول عبارتست از توسعه تاریخی و برجسته ساختن هنرمندانه توسعه تاریخی نرم افزار داده کاوی تا زمان حال ؛ معیار ها برای برای مقایسه نرم افزار داده کاوی در بخش دوم توضیح داده می شود که عبارتست از مقایسه نرم افزار داده کاوی . بخش آخر عبارتست از دسته بندی نرم افزار داده کاوی درون انواع فرآیند های مختلف که دسته بندی نرم افزار داده کاوی را پیشنهاد می کند و ابزار نرم افزار نوعی را برای انواع مختلف معرفی می کند .
توسعه تاریخی و جدید ترین تکنولوژی
داده کاوی از یک سری ویژگی هایی برخوردار بود که عبارتند از تاریخچه طولانی با ریشه های قوی در امار ، هوش مصنوعی ، یادگیری ماشینی و تحقیق پایگاه داده ها . کلمه " داده کاوی " را می توان بالنسبه در مراحل اولیه در مقاله لوول مشاهده نمود که در دهه 1980 منتشر گردید . پیشرفت ها در این حوزه از طریق توسعه ابزار نرم افزار مربوطه همراه گردید که با برنامه های پردازنده مرکزی برای تحلیل آماری در اوایل دهه 1950 شرو ع گردید و به انواع نرم افزار مستقل ، مشتری / سرور و نرم افزار وب محور منجر می گردد که راه حل خدمت رسانی امروزی است .
متعاقب تعریف اصلی ارایه شده در مرجع اول ، داده کاوی گامی در کشف دانش از فرآیند پایگاه داده ها (KDD) می باشد که شامل بکارگیری تحلیل داده ها و کشف الگوریتم ها برای تولید تعیین شماره الگو ها ( یا مدل ها ) در میان داده ها می باشد . KDD در همان مقاله مشابه به عنوان فرآیند غیر بدیهی شناسایی الگو های معتبر ، عالی ، به طور بالقوه سودمند و در نهایت قابل درک داده ها می باشد . بعضی مواقع تعریف گسترده تر KDD ، هم معنی برای داده کاوی استفاده می شود . این تفسیر گسترده تر به طور خاص در قالب ابزار نرم افزار محبوب است چون بخش عمده چنین ابزاری از فرآیند کامل KDD و نه صرفا یک گام انفرادی حمایت می کند .
امروزه ، تعداد قابل توجهی از روش های داده کاوی استاندارد در دسترس هستند . از چشم انداز تاریخی ، این روش ها از ریشه های مختلفی برخوردارند . یک گروه اولیه روش ها از آمار های کلاسیک پذیرفته شدند : دیگر اثبات فرضیات شناخته شده برای تولید فرضیات جدید در کانون تمرکز نیستند . مثال ها عبارتند از روش های تئوری تصمیم بیس (Bayesian) ، تئوری رگرسیون و تحلیل جزئ اصلی . گروه دیگراز روش ها نظیر درختان تصمیم گیری ، سیستم های قاعده محور و موارد دیگر از هوش مصنوعی نشات گرفته اند . اصطلاح " یادگیری ماشینی " شامل روش هایی نظیر ماشین های بردار پشتیبانی و شبکه های عصبی مصنوعی هستند . چندین دسته بندی مختلف و در بعضی مواقع هم پوشانده مجود دارند که به عنوان هوش محاسباتی خلاصه می شوند و برای مثال می توان از منطق نامعلوم ، شبکه های عصبی مصنوعی و الگوریتم های تکاملی نام برد....